## Covid restrictions, federal assistance and small businesses

What can we learn from electricity data?

#### Jack Gregory, Katrina Jessoe<sup>1</sup> & Gabriel E. Lade<sup>2</sup>

6 February 2023

<sup>&</sup>lt;sup>1</sup>University of California, Davis <sup>2</sup>Macalester University

- COVID was a massive economic shock.
- The policy response was enormous.



Source: European Council (2021).

- COVID was a massive economic shock.
- The policy response was enormous.
- So far, policy evaluation has been primarily concerned with employment, efficiency and inequality.



Source: European Council (2021).

- COVID was a massive economic shock.
- The policy response was enormous.
- So far, policy evaluation has been primarily concerned with employment, efficiency and inequality.
- What about the effects on businesses?



Source: European Council (2021).

## Electricity as a proxy

#### Problem

- The ideal dataset would measure high-resolution output across businesses and time.
- However, this data does not readily exist across sufficient businesses to perform an econometric analysis.

## Electricity as a proxy

#### Problem

- The ideal dataset would measure high-resolution output across businesses and time.
- However, this data does not readily exist across sufficient businesses to perform an econometric analysis.

#### Solution

- We exploit the correlation between electricity and activity.
- Electricity is a necessary input lacking substitutes and available at high-resolution both spatially and temporally.
- Potential weakening of the relationship from energy efficiency improvements and changing patterns of use.
- However, commercial electricity use remains unambiguously correlated with economic activity (Bover et al., 2020).



## Overview

#### Aim

- Investigate the effect of the pandemic and subsequent relief packages on small businesses
- Use high-resolution electricity data and an event study approach

#### Questions

- I How have public health orders impacted business activity and exits?
- Ø How have federal loan programs mitigated these impacts?

#### • Main assumptions

- Electricity use is a proxy for business activity; and,
- Electricity accounts are a proxy for exit.

## Preview of results

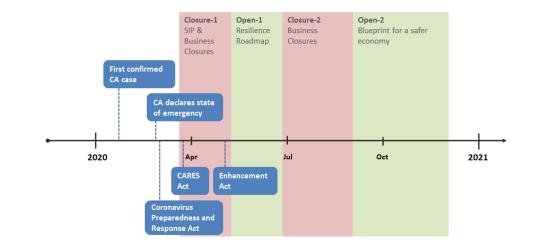
- Restrictions caused lower business activity, though both within-day and across-industry heterogeneity exists.
- 2 Restrictions caused more business exits.
- Solution Control to the second sec

## Literature I

• COVID precipitated a vast literature investigating its effects on, e.g., consumers (Alexander and Karger, 2020), health (Cicala et al., 2020), and the environment (Gillingham et al., 2020).

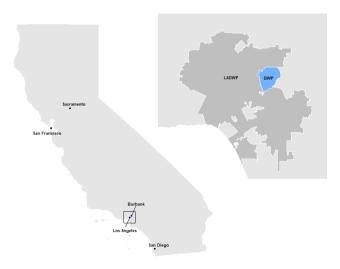
#### • Effects on small businesses

- Mainly investigate the effects on employment and business survival (e.g., Autor et al., 2022; Bartik et al., 2021; Hubbard and Strain, 2020).
- Vary based on their designs, including: surveys, instrumental variables, and difference-in-differences.
- Tend to rely on employment, administrative or financial data.


## Literature II

#### • High-resolution electricity data

- Mainly investigate energy efficiency (Boomhower and Davis, 2019; Novan and Smith, 2018), salience (Gilbert and Graff Zivin, 2014), and behavioural interventions (Allcott and Rogers, 2014).
- Naturally suits a two-way fixed effects approach (Gillingham et al., 2018; Ghanem and Smith, 2021).
- For COVID:
  - Many studies use electricity data at the aggregate level to proxy for economic activity (e.g., Agdas and Barooah, 2020; Bahmanyar et al., 2020).
  - Some studies focus on the residential sector (Cicala, 2020; Cheshmehzangi, 2020).
  - To our knowledge, no studies investigate the commercial sector.


# **Background & Data**

#### Timeline





## Burbank Water & Power I



## Burbank Water & Power II

#### • Utility

- Municipal utility in Southern California
- Accounts = 53,272
- Sales = 1,092 GWh

#### Electricity data

- Proprietary dataset containing universe of commercial customers
- Use: hourly panel with variation in business and time dimensions
- Bills: monthly panel of use and amount owed



## **COVID** Restrictions

#### Restrictions

- Manually compiled public health orders from state & county websites
- Similar to Alexander and Karger (2020) and Goolsbee et al. (2020)

#### • Data

- Contains restrictions enacted from 16 Mar 2020
- Orders include industry scope, measures and effective dates





## Federal assistance

#### • Loan programs

- Economic Injury Disaster Loans (EIDL) & Paycheck Protection Program (PPP)
- Primarily enacted through the CARES Act 2020
- Administered through the Small Business Administration (SBA)
- For our analysis, we ignore differences between the programs

#### • Data

• Public dataset containing universe of federal loans



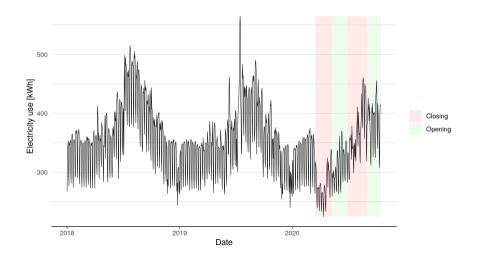
## Other Data I

#### Industry classifications

- Sources: BWP, SBA & Employment Development Department (EDD)
- Concordance between businesses and business classification codes (NAICS)
- BWP provided an initial matching
- Supplemented with data from the SBA and the California EDD

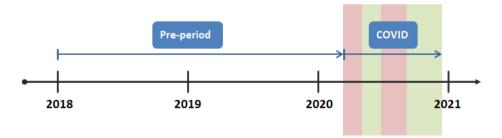
Businesses by industry

## Other Data II


#### • Local Climatology Data (LCD)

- Source: National Oceanic and Atmospheric Administration (NOAA)
- Hourly temperature data from the Hollywood Burbank Airport

#### • US Census Data


- Source: IPUMS National Historical Geographic Information System (NHGIS)
- Cross-section of socio-economic data by block-group

## Average electricity use



#### • Event study

- All businesses in the panel receive treatment simultaneously
- Allow for heterogeneous effects across restriction periods



## Empirical strategy II

$$y_{it} = \sum_{j} eta_{j} \mathbb{1}[r=j] + \mathbf{X}_{it} \boldsymbol{\gamma} + lpha_{idm} + arepsilon_{it}$$

- $y_{it}$  is the outcome of interest for business *i* in period *t*.
- $1[r = j] \forall j$  are the event indicators for a specific close or open period.
- **X**<sub>it</sub> are controls related to local weather and COVID case numbers.
- $\alpha_{\it idm}$  represents unit and time fixed effects combinations.
- $\varepsilon_{it}$  is an error term clustered at the business level.

## Empirical strategy II

$$m{y}_{it} = \sum_j eta_j \mathbb{1}[r=j] + m{X}_{it}m{\gamma} + lpha_{idm} + arepsilon_{it}$$

- $y_{it}$  is the outcome of interest for business *i* in period *t*.
- $1[r = j] \forall j$  are the event indicators for a specific close or open period.
- **X**<sub>it</sub> are controls related to local weather and COVID case numbers.
- $\alpha_{\textit{idm}}$  represents unit and time fixed effects combinations.
- $\varepsilon_{it}$  is an error term clustered at the business level.

## Empirical strategy II

$$y_{it} = \sum_{j} \beta_{j} \mathbf{1}[r=j] + \mathbf{X}_{it} \boldsymbol{\gamma} + \alpha_{idm} + \varepsilon_{it}$$

- $y_{it}$  is the outcome of interest for business *i* in period *t*.
- $1[r = j] \forall j$  are the event indicators for a specific close or open period.
- X<sub>it</sub> are controls related to local weather and COVID case numbers.
- $\alpha_{\textit{idm}}$  represents unit and time fixed effects combinations.
- $\varepsilon_{it}$  is an error term clustered at the business level.

## Empirical strategy II

$$y_{it} = \sum_{j} \beta_{j} \mathbf{1}[r = j] + \mathbf{X}_{it} \mathbf{\gamma} + \alpha_{idm} + \varepsilon_{it}$$

- $y_{it}$  is the outcome of interest for business *i* in period *t*.
- $1[r = j] \forall j$  are the event indicators for a specific close or open period.
- $X_{it}$  are controls related to local weather and COVID case numbers.
- $\alpha_{\textit{idm}}$  represents unit and time fixed effects combinations.
- $\varepsilon_{it}$  is an error term clustered at the business level.

## Empirical strategy II

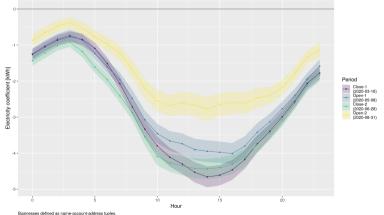
$$y_{it} = \sum_{j} eta_{j} \mathbb{1}[r=j] + \mathbf{X}_{it} oldsymbol{\gamma} + oldsymbol{lpha}_{idm} + arepsilon_{it}$$


- $y_{it}$  is the outcome of interest for business *i* in period *t*.
- $1[r = j] \forall j$  are the event indicators for a specific close or open period.
- X<sub>it</sub> are controls related to local weather and COVID case numbers.
- $\alpha_{idm}$  represents unit and time fixed effects combinations.
- $\varepsilon_{it}$  is an error term clustered at the business level.

## Empirical strategy II

$$y_{it} = \sum_{j} \beta_{j} \mathbf{1}[r=j] + \mathbf{X}_{it} \boldsymbol{\gamma} + \alpha_{idm} + \varepsilon_{it}$$

- $y_{it}$  is the outcome of interest for business *i* in period *t*.
- $1[r = j] \forall j$  are the event indicators for a specific close or open period.
- X<sub>it</sub> are controls related to local weather and COVID case numbers.
- $\alpha_{\textit{idm}}$  represents unit and time fixed effects combinations.
- $\varepsilon_{it}$  is an error term clustered at the business level.


## Average electricity use residuals

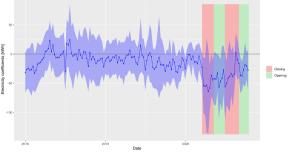


#### Heterogeneous response l

#### Business hourly coefficients

Regressors: temperature, ID-month baseline euse, & business, day-of-week, & month-of-year FEs



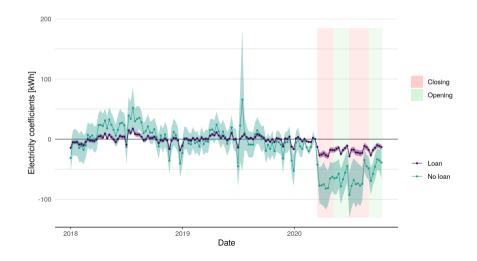

Shaded areas represent 99% confidence intervals.

#### Heterogeneous response II



Businesses defined as name-account-address tuples.

subserver demond as name account accrete super. Shaded areas represent closing and opening periods within LA County. Regression huddes the following controls: business, day-of-week, and month-of-year fixed effects and month-of-year baseline electricity use. Business weekly coefficients by industry Transportation and Warehousing Essential




Businesses defined as name-account-address tuples.

submeases owned as name-account-sources rupes. Shaded areas represent closing and opening periods within LA County. Regression includes the following controls: business, day-of-week, and month-of-year fixed effects and month-of-year baseline electricity use.

Other industries

## Average electricity use residuals by loans





#### Matching

- Implement matching to reduce selection bias.
- Use one-to-one nearest-neighbour matching with replacement.
- Covariates include the mean, maximum and standard deviation of pre-period energy use, business variables, and socio-economic variables.

#### Matching

- Implement matching to reduce selection bias.
- Use one-to-one nearest-neighbour matching with replacement.
- Covariates include the mean, maximum and standard deviation of pre-period energy use, business variables, and socio-economic variables.

#### • Two-way fixed effects

$$y_{it} = \beta_{loan} \mathbf{1}[loan] + \sum_{j} \beta_{j} \mathbf{1}[r] + \beta_{loan} \cdot \sum_{j} \beta_{j} \mathbf{1}[loan, r] + \mathbf{X}_{it} \boldsymbol{\gamma} + \alpha_{idm} + \varepsilon_{it}$$
(2)

- 1[loan] is an indicator defining whether a business received a federal loan.
- Interaction terms between loan and event dummies.
- All others defined as previously.

#### Matching

- Implement matching to reduce selection bias.
- Use one-to-one nearest-neighbour matching with replacement.
- Covariates include the mean, maximum and standard deviation of pre-period energy use, business variables, and socio-economic variables.

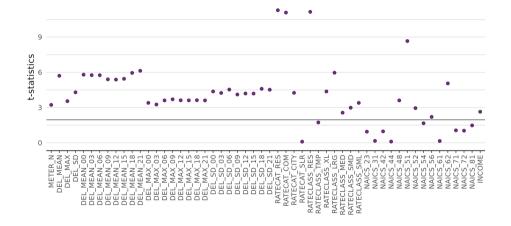
#### • Two-way fixed effects

$$y_{it} = \beta_{loan} \mathbf{1}[loan] + \sum_{j} \beta_{j} \mathbf{1}[r] + \beta_{loan} \cdot \sum_{j} \beta_{j} \mathbf{1}[loan, r] + \mathbf{X}_{it} \boldsymbol{\gamma} + \alpha_{idm} + \varepsilon_{it}$$
(2)

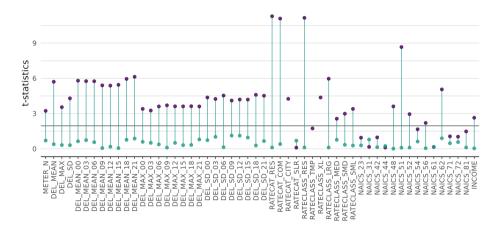
- 1[loan] is an indicator defining whether a business received a federal loan.
- Interaction terms between loan and event dummies.
- All others defined as previously.

#### Matching

- Implement matching to reduce selection bias.
- Use one-to-one nearest-neighbour matching with replacement.
- Covariates include the mean, maximum and standard deviation of pre-period energy use, business variables, and socio-economic variables.


#### • Two-way fixed effects

$$y_{it} = \beta_{loan} \mathbf{1}[loan] + \sum_{j} \beta_{j} \mathbf{1}[r] + \beta_{loan} \cdot \sum_{j} \beta_{j} \mathbf{1}[loan, r] + \mathbf{X}_{it} \boldsymbol{\gamma} + \alpha_{idm} + \varepsilon_{it}$$
(2)


- 1[loan] is an indicator defining whether a business received a federal loan.
- Interaction terms between loan and event dummies.
- All others defined as previously.

Motivation 0000000

#### Loan balance



# Loan balance



Empirical Strategy & Results

#### Average electricity use by loans

|                      | (1)<br>pretrend | (2)<br>+naics | (3)<br>+res | (4)<br>$\pm$ rate | (5)<br>+income     | (6) $\pm$ plevel |
|----------------------|-----------------|---------------|-------------|-------------------|--------------------|------------------|
| Loan                 | -15.39          | 1.79          | -4.26       | -4.01             | -2.66              | -2.93            |
|                      | (-1.45)         | (0.99)        | (-0.75)     | (-0.82)           | (-1.68)            | (-1.89)          |
| Loan $	imes$ Close-1 | 71.08           | 13.24         | 32.89       | 29.30             | 23.03 <sup>*</sup> | 20.11            |
|                      | (1.33)          | (1.16)        | (1.59)      | (1.45)            | (2.25)             | (1.93)           |
| Loan $	imes$ Open-1  | 66.56           | 16.00         | 33.46       | 27.85             | 26.51**            | 23.57*           |
|                      | (1.34)          | (1.31)        | (1.63)      | (1.39)            | (2.66)             | (2.33)           |
| Loan $	imes$ Close-2 | 90.59           | 31.69*        | 54.51*      | 57.05*            | 34.50**            | 32.39**          |
|                      | (1.63)          | (2.57)        | (2.43)      | (2.48)            | (2.86)             | (2.66)           |
| Loan $	imes$ Open-2  | 51.83*          | 20.67         | 30.07*      | 24.78*            | 23.51*             | 21.86*           |
|                      | (2.04)          | (1.93)        | (2.42)      | (2.02)            | (2.19)             | (2.00)           |
| Businesses           | 2,042           | 2,043         | 2,058       | 2,055             | 1,913              | 1,903            |
| Observations         | 1,139,468       | 1,119,493     | 1,139,696   | 1,134,504         | 1,040,462          | 1,029,133        |
| R <sup>2</sup>       | 0.962           | 0.988         | 0.977       | 0.983             | 0.963              | 0.965            |

Notes: Regressions include event dummies, weather covariates as well as industry, day-of-week and month-of-year fixed effects. Significance is represented as \*\*\* for p<0.001, \*\* for p<0.01, and \* for p<0.05; while, *t*-statistics are in parentheses.

Empirical Strategy & Results

# Average electricity use by loans

|                      | (1)<br>pretrend | (2)<br>+naics | (3)<br>+res | (4)<br>$\pm$ rate | (5)<br>+income | (6) $\pm$ plevel |
|----------------------|-----------------|---------------|-------------|-------------------|----------------|------------------|
| Loan                 | -15.39          | 1.79          | -4.26       | -4.01             | -2.66          | -2.93            |
|                      | (-1.45)         | (0.99)        | (-0.75)     | (-0.82)           | (-1.68)        | (-1.89)          |
| Loan $	imes$ Close-1 | 71.08           | 13.24         | 32.89       | 29.30             | 23.03*         | 20.11            |
|                      | (1.33)          | (1.16)        | (1.59)      | (1.45)            | (2.25)         | (1.93)           |
| Loan $	imes$ Open-1  | 66.56           | 16.00         | 33.46       | 27.85             | 26.51**        | 23.57*           |
|                      | (1.34)          | (1.31)        | (1.63)      | (1.39)            | (2.66)         | (2.33)           |
| Loan $	imes$ Close-2 | 90.59           | 31.69*        | 54.51*      | 57.05*            | 34.50**        | 32.39**          |
|                      | (1.63)          | (2.57)        | (2.43)      | (2.48)            | (2.86)         | (2.66)           |
| Loan $	imes$ Open-2  | 51.83*          | 20.67         | 30.07*      | 24.78*            | 23.51*         | 21.86*           |
|                      | (2.04)          | (1.93)        | (2.42)      | (2.02)            | (2.19)         | (2.00)           |
| Businesses           | 2,042           | 2,043         | 2,058       | 2,055             | 1,913          | 1,903            |
| Observations         | 1,139,468       | 1,119,493     | 1,139,696   | 1,134,504         | 1,040,462      | 1,029,133        |
| R <sup>2</sup>       | 0.962           | 0.988         | 0.977       | 0.983             | 0.963          | 0.965            |

Notes: Regressions include event dummies, weather covariates as well as industry, day-of-week and month-of-year fixed effects. Significance is represented as \*\*\* for p<0.001, \*\* for p<0.01, and \* for p<0.05; while, *t*-statistics are in parentheses.

Empirical Strategy & Results

### Average electricity use by loans

|                      | (1)<br>pretrend | (2)<br>+naics | (3)<br>+res | (4)<br>$\pm$ rate | (5)<br>+income | (6) $\pm$ plevel |
|----------------------|-----------------|---------------|-------------|-------------------|----------------|------------------|
| Loan                 | -15.39          | 1.79          | -4.26       | -4.01             | -2.66          | -2.93            |
|                      | (-1.45)         | (0.99)        | (-0.75)     | (-0.82)           | (-1.68)        | (-1.89)          |
| Loan $	imes$ Close-1 | 71.08           | 13.24         | 32.89       | 29.30             | 23.03*         | 20.11            |
|                      | (1.33)          | (1.16)        | (1.59)      | (1.45)            | (2.25)         | (1.93)           |
| Loan $	imes$ Open-1  | 66.56           | 16.00         | 33.46       | 27.85             | 26.51**        | 23.57*           |
|                      | (1.34)          | (1.31)        | (1.63)      | (1.39)            | (2.66)         | (2.33)           |
| Loan $	imes$ Close-2 | 90.59           | 31.69*        | 54.51*      | 57.05*            | 34.50**        | 32.39**          |
|                      | (1.63)          | (2.57)        | (2.43)      | (2.48)            | (2.86)         | (2.66)           |
| Loan $	imes$ Open-2  | 51.83*          | 20.67         | 30.07*      | 24.78*            | 23.51*         | 21.86*           |
|                      | (2.04)          | (1.93)        | (2.42)      | (2.02)            | (2.19)         | (2.00)           |
| Businesses           | 2,042           | 2,043         | 2,058       | 2,055             | 1,913          | 1,903            |
| Observations         | 1,139,468       | 1,119,493     | 1,139,696   | 1,134,504         | 1,040,462      | 1,029,133        |
| R <sup>2</sup>       | 0.962           | 0.988         | 0.977       | 0.983             | 0.963          | 0.965            |

Notes: Regressions include event dummies, weather covariates as well as industry, day-of-week and month-of-year fixed effects. Significance is represented as \*\*\* for p<0.001, \*\* for p<0.01, and \* for p<0.05; while, *t*-statistics are in parentheses.

# Survival analysis by loans

|                                 | All Data   | No Loan       | Loan       |
|---------------------------------|------------|---------------|------------|
|                                 | (1)        | (2)           | (3)        |
| Close-1 (2020-03-16)            | 0.00013*** | 0.00016***    | 0.00002    |
| 52 days                         | (4.59)     | (4.44)        | (1.18)     |
|                                 | 0.68%      | 0.83%         | 0.10%      |
| Open-1 (2020-05-08)             | 0.00032*** | 0.00032***    | 0.00031*** |
| 50 days                         | (7.80)     | (6.74)        | (3.94)     |
|                                 | 1.60%      | 1.60%         | 1.55%      |
| Close-2 (2020-06-28)            | 0.00055*** | 0.00055***    | 0.00055*** |
| 63 days                         | (12.05)    | (10.35)       | (6.16)     |
|                                 | 3.47%      | 3.47%         | 3.47%      |
| Open-2 (2020-08-31)             | 0.00052*** | 0.00052***    | 0.00051*** |
| 45 days                         | (11.85)    | (10.24)       | (5.98)     |
|                                 | 2.34%      | 2.34%         | 2.30%      |
| ID FE                           | X          | X             | X          |
| Businesses                      | 4,602      | 3,387         | 1,215      |
| Observations                    | 1,234,032  | 898,582       | 335,450    |
| R <sup>2</sup>                  | 0.02849    | 0.03278       | 0.01278    |
| Adjusted R <sup>2</sup> 0.02485 |            | 0.02912 0.009 |            |

 $\it Notes:$  Significance is represented as \*\*\* for p<0.001, \*\* for p<0.01, and \* for p<0.05; while,

t-statistics are in parentheses.

# Survival analysis by loans

|                         | All Data   | No Loan    | Loan       |
|-------------------------|------------|------------|------------|
|                         | (1)        | (2)        | (3)        |
| Close-1 (2020-03-16)    | 0.00013*** | 0.00016*** | 0.00002    |
| 52 days                 | (4.59)     | (4.44)     | (1.18)     |
|                         | 0.68%      | 0.83%      | 0.10%      |
| Open-1 (2020-05-08)     | 0.00032*** | 0.00032*** | 0.00031*** |
| 50 days                 | (7.80)     | (6.74)     | (3.94)     |
|                         | 1.60%      | 1.60%      | 1.55%      |
| Close-2 (2020-06-28)    | 0.00055*** | 0.00055*** | 0.00055*** |
| 63 days                 | (12.05)    | (10.35)    | (6.16)     |
|                         | 3.47%      | 3.47%      | 3.47%      |
| Open-2 (2020-08-31)     | 0.00052*** | 0.00052*** | 0.00051*** |
| 45 days                 | (11.85)    | (10.24)    | (5.98)     |
|                         | 2.34%      | 2.34%      | 2.30%      |
| ID FE                   | X          | X          | X          |
| Businesses              | 4,602      | 3.387      | 1,215      |
| Observations            | 1,234,032  | 898,582    | 335,450    |
| R <sup>2</sup>          | 0.02849    | 0.03278    | 0.01278    |
| Adjusted R <sup>2</sup> | 0.02485    | 0.02912    | 0.00918    |

 $\it Notes:$  Significance is represented as \*\*\* for p<0.001, \*\* for p<0.01, and \* for p<0.05; while,

t-statistics are in parentheses.

# Survival analysis by loans

|                         | All Data   | No Loan    | Loan       |
|-------------------------|------------|------------|------------|
|                         | (1)        | (2)        | (3)        |
| Close-1 (2020-03-16)    | 0.00013*** | 0.00016*** | 0.00002    |
| 52 days                 | (4.59)     | (4.44)     | (1.18)     |
|                         | 0.68%      | 0.83%      | 0.10%      |
| Open-1 (2020-05-08)     | 0.00032*** | 0.00032*** | 0.00031*** |
| 50 days                 | (7.80)     | (6.74)     | (3.94)     |
|                         | 1.60%      | 1.60%      | 1.55%      |
| Close-2 (2020-06-28)    | 0.00055*** | 0.00055*** | 0.00055*** |
| 63 days                 | (12.05)    | (10.35)    | (6.16)     |
|                         | 3.47%      | 3.47%      | 3.47%      |
| Open-2 (2020-08-31)     | 0.00052*** | 0.00052*** | 0.00051*** |
| 45 days                 | (11.85)    | (10.24)    | (5.98)     |
|                         | 2.34%      | 2.34%      | 2.30%      |
| ID FE                   | X          | X          | X          |
| Businesses              | 4,602      | 3,387      | 1,215      |
| Observations            | 1,234,032  | 898,582    | 335,450    |
| R <sup>2</sup>          | 0.02849    | 0.03278    | 0.01278    |
| Adjusted R <sup>2</sup> | 0.02485    | 0.02912    | 0.00918    |

 $\it Notes:$  Significance is represented as \*\*\* for p<0.001, \*\* for p<0.01, and \* for p<0.05; while,

t-statistics are in parentheses.

#### Extensions

- High spatial resolution of our data means we can recover matches across our datasets at the business level.
  - Modify restriction periods to be industry specific.
  - Explore heterogeneous effects across industries and loan programs.
- Use synthetic control or machine learning approaches to generate a business-level conterfactuals.
  - Improved matches may allow us to overcome loan selection bias.



# Contribution

- **O** Deepening understanding of how the pandemic affected business activity and exits.
- **②** First to assess the combined effect of both the PPP and EIDL programs.
- Sirst to study the high-resolution effects of federal loan receipt.

# Main takeaways

#### COVID

- Average commercial electricity use decreased due to COVID restrictions.
- Closure periods experienced lower activity than re-opening periods.
- Exits increased over the duration of the pandemic and accelerated during closure periods.

#### Federal loans

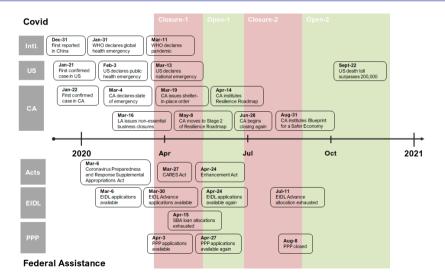
- Loan receipt correlated with smaller decreases in electricity use.
- Loan receipt also correlated with increased survival probability during the initial closure period, though the effect dissipates rapidly.

# Thank You!

jack@ucdavis.edu

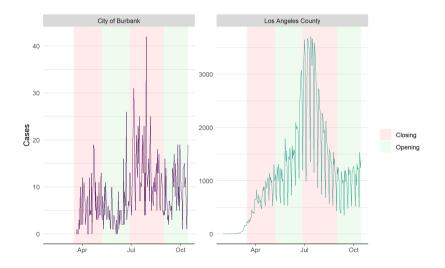
# References

#### References I


- Agdas, D. and Barooah, P. (2020). Impact of the covid-19 pandemic on the u.s. electricity demand and supply: An early view from data. IEEE Access, 8:151523–151534.
- Alexander, D. and Karger, E. (2020). Do stay-at-home orders cause people to stay at home? effects of stay-at-home orders on consumer behavior. Working Paper 2020-12, Federal Reserve Bank of Chicago.
- Allcott, H. and Rogers, T. (2014). The short-run and long-run effects of behavioral interventions: Experimental evidence from energy conservation. American Economic Review, 104(10):3003–3037.
- Autor, D., Cho, D., Crane, L., Goldar, M., Lutz, B., Montes, J., Peterman, W., Ratner, D., Villar, D., and Yildirmaz, A. (2022). An evaluation of the paycheck protection program using administrative payroll microdata. <u>Journal of Public</u> Economics, 211:104664.
- Bahmanyar, A., Estebsari, A., and Ernst, D. (2020). The impact of different covid-19 containment measures on electricity consumption in europe. Energy Research and Social Science, 68.
- Bartik, A., Cullen, Z., Glaeser, E., Luca, M., Stanton, C., and Sunderam, A. (2021). The targeting and impact of paycheck protection program loans to small businesses. Working Paper 27623, National Bureau of Economic Research.
- Boomhower, J. and Davis, L. (2019). Do energy efficiency investments deliver at the right time? <u>American Economic</u> Journal: Applied Economics, 12(1):115–139.
- Bover, O., Fabra, N., García-Uribe, S., Lacuesta, A., and Ramos, R. (2020). Firms and households during the pandemic: What do we learn from their electricity consumption? Documentos ocasionales, Banco de España.

# References II

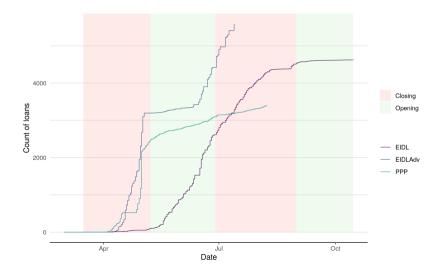
- Cheshmehzangi, A. (2020). Covid-19 and household energy implications: What are the main impacts on energy use? Heliyon, 6(10):e05202.
- Cicala, S. (2020). Powering work from home. Working Paper 27937, National Bureau of Economic Research.
- Cicala, S., Holland, S., Mansur, E., Muller, N., and Yates, A. (2020). Expected health effects of reduced air pollution from covid-19 social distancing. Working Paper 27135, National Bureau of Economic Research.
- Ghanem, D. and Smith, A. (2021). What are the benefits of high-frequency data for fixed effects panel models? Journal of the Association of Environmental and Resource Economists, 8(2):199–234.
- Gilbert, B. and Graff Zivin, J. (2014). Dynamic salience with intermittent billing: Evidence from smart electricity meters. Journal of Economic Behavior and Organization, 107:176–190.
- Gillingham, K., Keyes, A., and Palmer, K. (2018). Advances in evaluating energy efficiency policies and programs. <u>Annual</u> Review of Resource Economics, 10:511–532.
- Gillingham, K., Knittel, C., Li, J., Ovaere, M., and Reguant, M. (2020). The short-run and long-run effects of covid-19 on energy and the environment. Joule, 4(7):1337–1349.
- Goolsbee, A., Luo, N., Nesbitt, R., and Syverson, C. (2020). Covid-19 lockdown policies at the state and local level. Working Paper 2020-116, Becker Friedman Institute for Economics at Uchicago.
- Hubbard, R. and Strain, M. (2020). Has the paycheck protection program succeeded? Working Paper 28032, National Bureau of Economic Research.
- Novan, K. and Smith, A. (2018). The incentive to overinvest in energy efficiency: Evidence from hourly smart-meter data. Journal of the Association of Environmental and Resource Economists, 5(3):577–605.


# **Appendices**

# Detailed Timeline





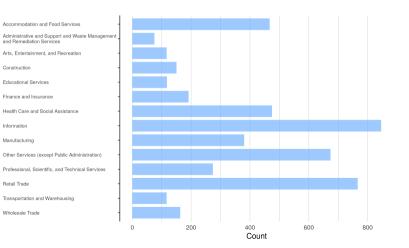

# COVID cases



# SBA loan programs

|              | РРР                                                                                                                                 | EIDL                                                                                                                                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description  | Low-interest, medium-term loan program where ap-<br>plications are processed through a network of private<br>lenders across the US. | Competitive-interest, long-term loan program where<br>applications are processed by the SBA; includes the<br>EIDL Advance where up to \$10,000 may be requested<br>separately or in conjunction with a full EIDL loan. |
| Purpose      | To meet operating expenses, primarily payroll.                                                                                      | To meet various financial obligations and operating expenses.                                                                                                                                                          |
| Availability | Apr to Aug 2020; Dec 2020 to present                                                                                                | EIDL Advance Mar to Jul 2020; EIDL Mar 2020 to present                                                                                                                                                                 |
| Max          | \$10 million                                                                                                                        | Six months of working capital                                                                                                                                                                                          |
| Terms        | Interest of $1\%$ repaid over 2 to 5 years and deferred<br>for 1 year with no collateral and no personal guarantee<br>required.     | Interest of 3.75% repaid over up to 30 years where collateral is required for loans over \$25,000 and a personal guarantees for loans exceeding \$200,000.                                                             |
| Forgivable   | Yes, if all employee retention criteria are met and funds<br>used for eligible expenses.                                            | No, loan may be repaid at any time with no pre-<br>payment penalties.                                                                                                                                                  |

# Loan count by date & program





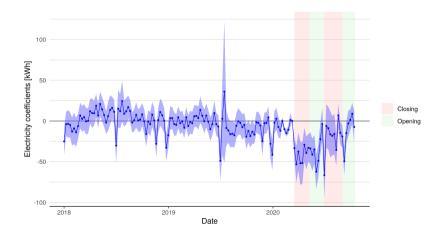

# Loan summary stats

| Characteristic                            | No loan | Loan       |
|-------------------------------------------|---------|------------|
| Number of businesses                      | 3,587   | 1,226      |
| Daily electricity use pre-pandemic (kWh)  | 444.5   | 119.4      |
| Daily electricity use post-pandemic (kWh) | 419.4   | 110.8      |
| Number of business exits post-pandemic    | 181     | 61         |
| Share of business exits post-pandemic (%) | 5.7     | 5.2        |
| Mean loans per business                   |         | 2.0        |
| Mean date of first loan                   |         | 2020-05-06 |
| Mean date of all loans                    |         | 2020-05-17 |
| Mean amount of first loan                 |         | 121,172    |
| Mean amount of total loan                 |         | 197,504    |

# NAICS industry codes



Return


# Change in electricity use

|                      | (1)                              | (2)                           | (3)                              | (4)                              |
|----------------------|----------------------------------|-------------------------------|----------------------------------|----------------------------------|
| Close-1 (2020-03-16) | -64.70 <sup>***</sup><br>(-5.12) | $^{-66.94^{***}}_{(-5.11)}$   | -71.40 <sup>***</sup><br>(-5.33) | -71.49 <sup>***</sup><br>(-5.33) |
| Open-1 (2020-05-08)  | -51.14 <sup>***</sup><br>(-3.99) | $-61.89^{***}$<br>(-4.48)     | $-61.87^{***}$<br>(-4.48)        | -61.87 <sup>***</sup><br>(-4.48) |
| Close-2 (2020-06-28) | -63.50***<br>(-4.48)             | -64.68***<br>(-4.39)          | -64.00***<br>(-4.36)             | -63.87***<br>(-4.36)             |
| Open-2 (2020-08-31)  | -26.04*<br>(-2.27)               | -43.26***<br>(-3.55)          | -48.37***<br>(-3.88)             | -48.50***<br>(-3.88)             |
| Temperature          |                                  | 2.97 <sup>***</sup><br>(9.13) | 1.55 <sup>***</sup><br>(5.68)    | 1.55 <sup>***</sup><br>(5.67)    |
| HDD                  |                                  |                               | 2.57 <sup>***</sup><br>(8.46)    | 2.57 <sup>***</sup><br>(8.46)    |
| ID FE                | X                                | X                             | X                                | X                                |
| Day-of-Week FE       | X                                | X                             | X                                |                                  |
| Month-of-Year FE     | X                                | X                             | X                                |                                  |
| ID:Day-of-Week FE    |                                  |                               |                                  | X                                |
| ID:Month-of-Year FE  |                                  |                               |                                  | X                                |
| Businesses           | 4,813                            | 4,546                         | 4,546                            | 4,544                            |
| Observations         | 4,402,221                        | 4,327,915                     | 4,327,915                        | 4,327,896                        |
| R <sup>2</sup>       | 0.957                            | 0.966                         | 0.966                            | 0.977                            |

*Notes:* Significance is represented as \*\*\* for p < 0.001, \*\* for p < 0.01, and \* for p < 0.05; while, *t*-statistics are in parentheses.



# Change in electricity with Burbank cases



# Change in electricity use by industry I



Businesses defined as name-account-address tuples.

supresses cerime as name-account-accrets types. Shaded areas represent closing and opening periods within LA County. Represents includes the influence certaints functions deard awak, and month-al-acer facet affects and month-al-acer transition electricity use.



Businesses defined as norm-account-address tiples. Shaded areas represent closing and opening periods within LA County. Regression includes the following controls: business, day-of-week, and month-of-year fixed effects and month-of-year baseline electricity use.

# Change in electricity use by industry II



Businesses defined as name-account-address tuples.

supresses cerime as name-account-accrets types. Shaded areas represent closing and opening periods within LA County. Represents includes the influence certaints functions deard awak, and month-al-acer facet affects and month-al-acer transition electricity use.

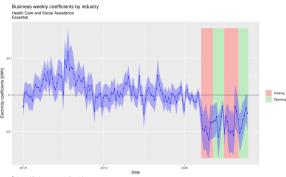


Businesses defined as name-account-address tuples. Shaded areas represent closing and opening periods within LA County. Regression includes the following controls: business, day-of-week, and month-of-year lated effects and month-of-year baseline electricity use.

# Change in electricity use by industry III



Businesses defined as name-account-address tuples.


supresses cerned as num-accum-accress types. Shaded areas represent closing and opening periods within LA County. Represents includes the following controls functions: devolutional, and month-alwar fixed affects and month-olwar baseline electricity use



Businesses defined as norm-account-address tiples. Shaded areas represent olosing and opening periods within LA County. Regression includes the following controls business, day-of-week, and month-of-year fixed effects and month-of-year baseline electricity use.



# Change in electricity use by industry IV



Businesses defined as name-account-address tuples.

subserver demons as name account accrete super. Shaded areas represent closing and opening periods within LA County. Regression huddes the following controls: business, day-of-week, and month-of-year load effects and month-of-year baseline electricity use.



Businesses defined as norm-account-address tiples. Shaded areas represent olosing and opening periods within LA County. Regression includes the following controls business, day-of-week, and month-of-year fixed effects and month-of-year baseline electricity use.

# Change in electricity use by industry V



Businesses defined as name-account-address tuples.

supresses cerime as name-account-accrets types. Shaded areas represent closing and opening periods within LA County. Represents includes the influence certaints functions deard awak, and month-al-acer facet affects and month-al-acer transition electricity use.



Businesses defined as name-account-address tuples.

usuanesses demond as name account-accress upeers Shaded areas represent closing and opening periods within LA County. Regression includes the slowing controls: business, day-of-week, and month-of-year fixed effects and month-of-year baseline electricity use.

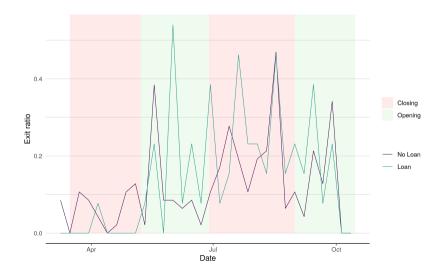
# Change in electricity use by industry VI



Businesses defined as name-account-address tuples.

subserver demons as name account accrete super. Shaded areas represent closing and opening periods within LA County. Regression huddes the following controls: business, day-of-week, and month-of-year load effects and month-of-year baseline electricity use.




submesses between as name-account-access upper. Shaded areas represent closing and opening periods within LA County. Bearsening to hold the following controls: business, development, and month-of-over freed effects and month-of-over baseline electricity use.

# Change in electricity use by loans

|                         | All D                     | ata                              | No Loan                   |                                  | Loan                   |                                |
|-------------------------|---------------------------|----------------------------------|---------------------------|----------------------------------|------------------------|--------------------------------|
|                         | (1)                       | (2)                              | (3)                       | (4)                              | (5)                    | (6)                            |
| Close-1 (2020-03-16)    | -64.76***<br>(-5.13)      | -70.05***<br>(-5.38)             | $-80.38^{***}$<br>(-4.61) | -86.54***<br>(-4.82)             | -24.12***<br>(-9.69)   | -27.05***<br>(-10.69)          |
| Open-1 (2020-05-08)     | $-51.29^{***}$<br>(-4.01) | -60.78***<br>(-4.53)             | $-64.99^{***}$ $(-3.68)$  | $-76.47^{***}$ $(-4.13)$         | $-15.49^{***}$ (-6.63) | -19.59***<br>(-8.04)           |
| Close-2 (2020-06-28)    | -67.84***<br>(-4.58)      | -65.79***<br>(-4.48)             | -84.03***<br>(-4.13)      | -81.60***<br>(-4.04)             | -24.03***<br>(-9.10)   | -23.03***<br>(-8.80)           |
| Open-2 (2020-08-31)     | $-26.16^{*}$ (-2.28)      | -45.60 <sup>***</sup><br>(-3.75) | $-32.26^{*}$<br>(-2.04)   | -55.48 <sup>***</sup><br>(-3.32) | -9.86***<br>(-4.25)    | $-19.02^{***}$ (-7.71)         |
| Temperature             |                           | 1.52 <sup>***</sup><br>(5.69)    |                           | 1.91 <sup>***</sup><br>(5.24)    |                        | 0.46 <sup>***</sup><br>(7.23)  |
| HDD                     |                           | 2.51 <sup>***</sup><br>(8.49)    |                           | 2.90 <sup>***</sup><br>(7.20)    |                        | 1.45 <sup>***</sup><br>(17.30) |
| ID FE                   | X                         | X                                | X                         | X                                | X                      | X                              |
| Day-of-Week FE          | X                         | X                                | X                         | X                                | X                      | X                              |
| Month-of-Year FE        | X                         | X                                | X                         | X                                | X                      | X                              |
| Businesses              | 4,813                     | 4,813                            | 3,587                     | 3,587                            | 1,226                  | 1,226                          |
| Observations            | 4,402,221                 | 4,402,221                        | 3,221,128                 | 3,221,128                        | 1,181,093              | 1,181,093                      |
| R <sup>2</sup>          | 0.96                      | 0.96                             | 0.96                      | 0.96                             | 0.90                   | 0.90                           |
| Adjusted R <sup>2</sup> | 0.96                      | 0.96                             | 0.96                      | 0.96                             | 0.90                   | 0.90                           |

Notes: Significance is represented as \*\*\* for p<0.001, \*\* for p<0.01, and \* for p<0.05; while, t-statistics are in parentheses.

# Exit count by date & program





# Change in account numbers

|                               | (1)                            | (2)                            | (3)                                               | (4)                     | (5)                            |
|-------------------------------|--------------------------------|--------------------------------|---------------------------------------------------|-------------------------|--------------------------------|
| Close-1 (2020-03-16)          | -0.62***<br>(0.09)             | -0.47***<br>(0.10)             | -0.45***<br>(0.10)                                | -0.47***<br>(0.10)      | -0.46<br>(0.33)                |
| Open-1 (2020-05-08)           | -1.00***<br>(0.09)             | $^{-1.05**}_{(0.11)}$          | $-0.96^{***}$<br>(0.11)                           | $-1.00^{***}$ (0.11)    | -1.00**<br>(0.37)              |
| Close-2 (2020-06-28)          | -1.54***<br>(0.08)             | -1.83 <sup>***</sup><br>(0.09) | $-1.82^{***}$<br>(0.09)                           | $-1.83^{***}$ (0.09)    | -1.83 <sup>***</sup><br>(0.36) |
| Open-2 (2020-08-31)           | -2.18 <sup>***</sup><br>(0.09) | -2.43 <sup>***</sup><br>(0.10) | $-2.28^{***}$<br>(0.11)                           | $-2.26^{***}$<br>(0.11) | -2.28 <sup>***</sup><br>(0.36) |
| Temp                          |                                |                                | $egin{array}{c} -0.03^{***} \ (0.01) \end{array}$ | ${-0.04}^{***}$ (0.01)  | -0.04***<br>(0.01)             |
| HDD                           |                                |                                |                                                   | 0.03<br>(0.02)          | 0.03 <sup>***</sup><br>(0.01)  |
| Industry-Zip FE               | х                              | х                              | Х                                                 | х                       | х                              |
| Month-of-Year FE              |                                | х                              | х                                                 | х                       |                                |
| IZ:Month-of-Year FE           | 60                             | 60                             | 60                                                | <u> </u>                | X                              |
| Industry-Zips<br>Observations | 68<br>9,820                    | 68<br>9,820                    | 68<br>9,820                                       | 68<br>9,820             | 68<br>9,820                    |
| R <sup>2</sup>                | 9,820                          | 9,820                          | 9,820                                             | 9,820                   | 9,820                          |
| Adjusted R <sup>2</sup>       | 0.09                           | 0.10                           | 0.09                                              | 0.09                    | 1.00                           |

Notes: Significance is represented as \*\*\* for p<0.001, \*\* for p<0.01, and \* for p<0.05; while, standard errors are in parentheses.